3,647 research outputs found

    A pattern reconfigurable U-slot antenna and its applications in MIMO systems

    Full text link
    A new compact pattern reconfigurable U-slot antenna is presented. The antenna consists of a U-slot patch and eight shorting posts. Each edge of the square patch is connected to two shorting posts via PIN diodes. By switching between the different states of the PIN diodes, the proposed antenna can operate in either monopolar patch or normal patch mode in similar frequency ranges. Therefore, its radiation pattern can be switched between conical and boresight patterns electrically. In addition, the plane with the maximum power level of the conical pattern can be changed between two orthogonal planes. Owing to a novel design of the switch geometry, the antenna does not need dc bias lines. The measured overlapping impedance bandwidth of the two modes is 6.6% with a center (S/ 11/<frequency of 5.32 GHz. The measured radiation patterns agree well with simulated results. The antennas are incorporated in a 2×2 multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system to demonstrate the improvement in system capacity. In the real-time MIMO-OFDM channel measurement, it is shown that compared to omnidirectional antennas, the pattern reconfigurable antennas can enhance the system capacity, with 17% improvement in a line-of-sight (LOS) scenario and 12% in a non-LOS (NLOS) scenario at a signal-to-noise ratio (SNR) of 10 dB. © 2011 IEEE

    Organic light-emitting diodes based on a cohost electron transporting composite

    Get PDF
    The efficiency of green organic electroluminescent devices have been improved by cohosting the electron dominant complex, 4,7-diphenyl-1,10- phenanthroline into the traditional electron transporting layer of tris (8-hydroxyquinoline) aluminum. In this cohost strategy, we demonstrate that the luminous efficiency is enhanced by >20% while the driving voltage can be reduced by ∼30% in a uniformly mixed composition as compared to the traditional device configuration. The corresponding device lifetime under atmospheric condition is extended by a factor of ∼1.8, attributed to the reduction of the accumulated positive charges near the electron-hole recombination regime. Results indicate that the knowledge of bulk conductivity engineering of organic n-type transporters is essential in enhancing organic light-emitting devices. © 2006 American Institute of Physics.published_or_final_versio

    Improving the efficiency of organic light emitting devices by using co-host electron transport layer

    Get PDF
    By engineering a new cohosting system of tris(8-hydroxyquinoline) and 4,7-diphenyl-1,10-phenanthroline in the electron transport layer, the current efficiency of the organic light emitting diode is improved by 34% to 4.3 cd/A as compared to the device with a single host of Alq 3 as the electron transport layer. The maximum luminance is over 16,000 cd/m 2 at the bias of 22 V and the current of 475 mA/cm 2, which is ∼ 73% higher than the single host Alq 3 device without optimizing the layer thickness. The reasons for the improvement will be investigated. The results strongly indicate that the knowledge of bulk conductivity engineering of organic n-type transporters shows practical significance in OLED applications. © 2005 Elsevier B.V. All rights reserved.postprin

    A model-based method with joint sparsity constant for direct diffusion tensor estimation

    Get PDF
    Diffusion tensor imaging (DTI) has been widely used for nondestructive characterization of microstructures of myocardium or brain connectivity. It requires repeated acquisition with different diffusion gradients. The long acquisition time greatly limits the clinical application of DTI. In this paper, a novel method, named model-based method with joint sparsity constraint (MB-JSC), effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images in direct estimation of the diffusion tensor from highly undersampled k-space data. Experimental results demonstrate that the proposed method is able to estimate the diffusion tensors more accurately than the existing method when a high net reduction factor is used.published_or_final_versionThe 9th IEEE International Symposium on Biomedical Imaging (ISBI 2012), Barcelona, Spain, 2-5 May 2012. In Proceedings of the 9th ISBI, 2012, p. 510-51

    Design of arbitrarily shaped planar microstrip antenna arrays with improved efficiency

    Full text link
    A design technique is described for an arbitrarily shaped planar microstrip antenna array with improved radiation efficiency. In order to fully utilize the limited antenna aperture, several basic modules are proposed from which we construct the array. A consideration of the aperture shape shows that with several practical examples a proper combination of these basic modules not only allows the convenient design of arbitrarily-shaped microstrip array, but also helps to improve the aperture radiation efficiency. To confirm the feasibility of the approach, a circular array with 256 elements was constructed and fabricated. Both computed and measured aperture radiation results are compared and these demonstrate that the design technique is effective for arbitrarily-shaped planar microstrip arrays. © 2013 Sheng Ye et al

    Design and Testing of Cesium Atomic Concentration Detection System Based on TDLAS

    Full text link
    In order to better build the Neutral Beam Injector with Negative Ion Source (NNBI), the pre-research on key technologies has been carried out for the Comprehensive Research Facility for Fusion Technology (CRAFT). Cesium seeding into negative-ion sources is a prerequisite to obtain the required negative hydrogen ion. The performance of ion source largely depends on the cesium conditions in the source. It is very necessary to quantitatively measure the amount of cesium in the source during the plasma on and off periods (vacuum stage). This article uses the absorption peak of cesium atoms near 852.1nm to build a cesium atom concentration detection system based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. The test experiment based on the cesium cell is carried out, obtained the variation curve of cesium concentration at different temperatures. The experimental results indicate that: the system detection range is within 5*10E6-2.5*10E7 pieces/cm3 and the system resolution better than 1*10E6 pieces/cm3.Comment: 8 pages,7 figures, the 20th International Symposium on Laser-Aided Plasma Diagnostic

    Criticality in correlated quantum matter

    Full text link
    At quantum critical points (QCP) \cite{Pfeuty:1971,Young:1975,Hertz:1976,Chakravarty:1989,Millis:1993,Chubukov:1 994,Coleman:2005} there are quantum fluctuations on all length scales, from microscopic to macroscopic lengths, which, remarkably, can be observed at finite temperatures, the regime to which all experiments are necessarily confined. A fundamental question is how high in temperature can the effects of quantum criticality persist? That is, can physical observables be described in terms of universal scaling functions originating from the QCPs? Here we answer these questions by examining exact solutions of models of correlated systems and find that the temperature can be surprisingly high. As a powerful illustration of quantum criticality, we predict that the zero temperature superfluid density, ρs(0)\rho_{s}(0), and the transition temperature, TcT_{c}, of the cuprates are related by Tcρs(0)yT_{c}\propto\rho_{s}(0)^y, where the exponent yy is different at the two edges of the superconducting dome, signifying the respective QCPs. This relationship can be tested in high quality crystals.Comment: Final accepted version not including minor stylistic correction

    An interdisciplinary intervention for older Taiwanese patients after surgery for hip fracture improves health-related quality of life

    Get PDF
    Abstract Background The effects of intervention programs on health-related quality of life (HRQOL) of patients with hip fracture have not been well studied. We hypothesized that older patients with hip fracture who received our interdisciplinary intervention program would have better HRQOL than those who did not. Methods A randomized experimental design was used. Older patients with hip fracture (N = 162), 60 to 98 years old, from a medical center in northern Taiwan were randomly assigned to an experimental (n = 80) or control (n = 82) group. HRQOL was measured by the SF-36 Taiwan version at 1, 3, 6, and 12 months after discharge. Results The experimental group had significantly better overall outcomes in bodily pain (&#946; = 9.38, p = 0.002), vitality (&#946; = 9.40, p &lt; 0.001), mental health (&#946; = 8.16, p = 0.004), physical function (&#946; = 16.01, p &lt; 0.001), and role physical (&#946; = 22.66, p &lt; 0.001) than the control group at any time point during the first year after discharge. Physical-related health outcomes (physical functioning, role physical, and vitality) had larger treatment effects than emotional/mental- and social functioning-related health outcomes. Conclusions This interdisciplinary intervention program may improve health outcomes of elders with hip fracture. Our results may provide a reference for health care providers in countries using similar programs with Chinese/Taiwanese immigrant populations. Trial registration NCT01052636http://deepblue.lib.umich.edu/bitstream/2027.42/78259/1/1471-2474-11-225.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78259/2/1471-2474-11-225.pdfPeer Reviewe
    corecore